Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Environ Microbiol ; 26(3): e16608, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504412

RESUMO

Rhodopseudomonas palustris TIE-1 grows photoautotrophically with Fe(II) as an electron donor and photoheterotrophically with a variety of organic substrates. However, it is unclear whether R. palustris TIE-1 conducts Fe(II) oxidation in conditions where organic substrates and Fe(II) are available simultaneously. In addition, the effect of organic co-substrates on Fe(II) oxidation rates or the identity of Fe(III) minerals formed is unknown. We incubated R. palustris TIE-1 with 2 mM Fe(II), amended with 0.6 mM organic co-substrate, and in the presence/absence of CO2 . We found that in the absence of CO2 , only the organic co-substrates acetate, lactate and pyruvate, but not Fe(II), were consumed. When CO2 was present, Fe(II) and all organic substrates were consumed. Acetate, butyrate and pyruvate were consumed before Fe(II) oxidation commenced, whereas lactate and glucose were consumed at the same time as Fe(II) oxidation proceeded. Lactate, pyruvate and glucose increased the Fe(II) oxidation rate significantly (by up to threefold in the case of lactate). 57 Fe Mössbauer spectroscopy revealed that short-range ordered Fe(III) oxyhydroxides were formed under all conditions. This study demonstrates phototrophic Fe(II) oxidation proceeds even in the presence of organic compounds, and that the simultaneous oxidation of organic substrates can stimulate Fe(II) oxidation.


Assuntos
Dióxido de Carbono , Compostos Férricos , Rodopseudomonas , Oxirredução , Ácido Láctico , Compostos Ferrosos , Piruvatos , Acetatos , Glucose
2.
Environ Microbiol Rep ; 16(2): e13239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490970

RESUMO

Phototrophic Fe(II)-oxidizers use Fe(II) as electron donor for CO2 fixation thus linking Fe(II) oxidation, ATP formation, and growth directly to the availability of sunlight. We compared the effect of short (10 h light/14 h dark) and long (2-3 days light/2-3 days dark) light/dark cycles to constant light conditions for the phototrophic Fe(II)-oxidizer Chlorobium ferrooxidans KoFox. Fe(II) oxidation was completed first in the setup with constant light (9 mM Fe(II) oxidised within 8.9 days) compared to the light/dark cycles but both short and long light/dark cycles showed faster maximum Fe(II) oxidation rates. In the short and long cycle, Fe(II) oxidation rates reached 3.5 ± 1.0 and 2.6 ± 0.3 mM/d, respectively, compared to 2.1 ± 0.3 mM/d in the constant light setup. Maximum Fe(II) oxidation was significantly faster in the short cycle compared to the constant light setup. Cell growth reached roughly equivalent cell numbers across all three light conditions (from 0.2-2.0 × 106 cells/mL to 1.1-1.4 × 108 cells/mL) and took place in both the light and dark phases of incubation. SEM images showed different mineral structures independent of the light setup and 57 Fe Mössbauer spectroscopy confirmed the formation of poorly crystalline Fe(III) oxyhydroxides (such as ferrihydrite) in all three setups. Our results suggest that periods of darkness have a significant impact on phototrophic Fe(II)-oxidizers and significantly influence rates of Fe(II) oxidation.


Assuntos
Fenômenos Bioquímicos , Compostos Férricos , Compostos Ferrosos , Minerais , Oxirredução
3.
Environ Pollut ; 347: 123786, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484962

RESUMO

Water management in paddy soils can effectively reduce the soil-to-rice grain transfer of either As or Cd, but not of both elements simultaneously due to the higher mobility of As under reducing and Cd under oxidizing soil conditions. Limestone amendment, the common form of liming, is well known for decreasing Cd accumulation in rice grown on acidic soils. Sulfate amendment was suggested to effectively decrease As accumulation in rice, especially under intermittent soil flooding. To study the unknown effects of combined sulfate and limestone amendment under intermittent flooding for simultaneously decreasing As and Cd in rice, we performed a pot experiment using an acidic sandy loam paddy soil. We also included a clay loam paddy soil to study the role of soil texture in low-As rice production under intermittent flooding. We found that liming not only decreased rice Cd concentrations but also greatly decreased dimethylarsenate (DMA) accumulation in rice. We hypothesize that this is due to suppressed sulfate reduction, As methylation, and As thiolation by liming in the sulfate-amended soil and a higher share of deprotonated DMA at higher pH which is taken up less readily than protonated DMA. Decreased gene abundance of potential soil sulfate-reducers by liming further supported our hypothesis. Combined sulfate and limestone amendment to the acidic sandy loam soil produced rice with 43% lower inorganic As, 72% lower DMA, and 68% lower Cd compared to the control soil without amendment. A tradeoff between soil aeration and water availability was observed for the clay loam soil, suggesting difficulties to decrease As in rice while avoiding plant water stress under intermittent flooding in fine-textured soils. Our results suggest that combining sulfate amendment, liming, and intermittent flooding can help to secure rice safety when the presence of both As and Cd in coarse-textured soils is of concern.


Assuntos
Arsênio , Compostos de Cálcio , Oryza , Óxidos , Poluentes do Solo , Cádmio/análise , Arsênio/análise , Carbonato de Cálcio , Solo , Sulfatos , Argila , Óxidos de Enxofre , Areia , Poluentes do Solo/análise
4.
Sci Total Environ ; 926: 172062, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38554974

RESUMO

Groundwater nitrate pollution is a major reason for deteriorating water quality and threatens human and animal health. Yet, mitigating groundwater contamination naturally is often complicated since most aquifers are limited in bioavailable carbon. Since metabolically flexible microbes might have advantages for survival, this study presents a detailed description and first results on our modification of the BacTrap© method, aiming to determine the prevailing microbial community's potential to utilize chemolithotrophic pathways. Our microbial trapping devices (MTDs) were amended with four different iron sources and incubated in seven groundwater monitoring wells for ∼3 months to promote growth of nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOxB) in a nitrate-contaminated karst aquifer. Phylogenetic analysis based on 16S rRNA gene sequences implies that the identity of the iron source influenced the microbial community's composition. In addition, high throughput amplicon sequencing revealed increased relative 16S rRNA gene abundances of OTUs affiliated to genera such as Thiobacillus, Rhodobacter, Pseudomonas, Albidiferax, and Sideroxydans. MTD-derived enrichments set up with Fe(II)/nitrate/acetate to isolate potential NRFeOxB, were dominated by e.g., Acidovorax spp., Paracoccus spp. and Propionivibrio spp. MTDs are a cost-effective approach for investigating microorganisms in groundwater and our data not only solidifies the MTD's capacity to provide insights into the metabolic flexibility of the aquifer's microbial community, but also substantiates its metabolic potential for anaerobic Fe(II) oxidation.


Assuntos
Comamonadaceae , Água Subterrânea , Humanos , Ferro , Nitratos/metabolismo , RNA Ribossômico 16S/genética , Filogenia , Minerais , Oxirredução , Compostos Ferrosos/metabolismo , Água Subterrânea/microbiologia
5.
ACS Earth Space Chem ; 7(10): 1837-1847, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37876664

RESUMO

Heavy metal pollutants in the environment are of global concern due to their risk of contaminating drinking water and food supplies. Removal of these metals can be achieved by adsorption to mixed-valent magnetite nanoparticles (MNPs) due to their high surface area, reactivity, and ability for magnetic recovery. The adsorption capacity and overall efficiency of MNPs are influenced by redox state as well as surface charge, the latter of which is directly related to solution pH. However, the influence of microbial redox cycling of iron (Fe) in magnetite alongside the change of pH on the metal adsorption process by MNPs remains an open question. Here we investigated adsorption of Cd2+ and Cu2+ by MNPs at different pH values that were modified by microbial Fe(II) oxidation or Fe(III) reduction. We found that the maximum adsorption capacity increased with pH for Cd2+ from 256 µmol/g Fe at pH 5.0 to 478 µmol/g Fe at pH 7.3 and for Cu2+ from 229 µmol/g Fe at pH 5.0 to 274 µmol/g Fe at pH 5.5. Microbially reduced MNPs exhibited the greatest adsorption for both Cu2+ and Cd2+ (632 µmol/g Fe at pH 7.3 for Cd2+ and 530 µmol/g Fe at pH 5.5 for Cu2+). Magnetite oxidation also enhanced adsorption of Cu2+ but inhibited Cd2+. Our results show that microbial modification of MNPs has an important impact on the (im-)mobilization of aqueous contaminations like Cu2+ and Cd2+ and that a change in stoichiometry of the MNPs can have a greater influence than a change of pH.

6.
Nat Rev Microbiol ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863969

RESUMO

In recent years, there has been considerable progress in determining the soil properties that influence the structure of the soil microbiome. By contrast, the effects of microorganisms on their soil habitat have received less attention with most previous studies focusing on microbial contributions to soil carbon and nitrogen dynamics. However, soil microorganisms are not only involved in nutrient cycling and organic matter transformations but also alter the soil habitat through various biochemical and biophysical mechanisms. Such microbially mediated modifications of soil properties can have local impacts on microbiome assembly with pronounced ecological ramifications. In this Review, we describe the processes by which microorganisms modify the soil environment, considering soil physics, hydrology and chemistry. We explore how microorganism-soil interactions can generate feedback loops and discuss how microbially mediated modifications of soil properties can serve as an alternative avenue for the management and manipulation of microbiomes to combat soil threats and global change.

7.
Environ Sci Technol ; 57(33): 12546-12555, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37535944

RESUMO

Microbially mediated nitrate reduction coupled with Fe(II) oxidation (NRFO) plays an important role in the Fe/N interactions in pH-neutral anoxic environments. However, the relative contributions of the chemical and microbial processes to NRFO are still unclear. In this study, N-O isotope fractionation during NRFO was investigated. The ratios of O and N isotope enrichment factors (18ε:15ε)-NO3- indicated that the main nitrate reductase functioning in Acidovorax sp. strain BoFeN1 was membrane-bound dissimilatory nitrate reductase (Nar). N-O isotope fractionation during chemodenitrification [Fe(II) + NO2-], microbial nitrite reduction (cells + NO2-), and the coupled process [cells + NO2- + Fe(II)] was explored. The ratios of (18ε:15ε)-NO2- were 0.58 ± 0.05 during chemodenitrification and -0.41 ± 0.11 during microbial nitrite reduction, indicating that N-O isotopes can be used to distinguish chemical from biological reactions. The (18ε:15ε)-NO2- of 0.70 ± 0.05 during the coupled process was close to that obtained for chemodenitrification, indicating that chemodenitrification played a more important role than biological reactions during the coupled process. The results of kinetic modeling showed that the relative contribution of chemodenitrification was 99.3% during the coupled process, which was consistent with that of isotope fractionation. This study provides a better understanding of chemical and biological mechanisms of NRFO using N-O isotopes and kinetic modeling.


Assuntos
Comamonadaceae , Nitratos , Nitritos , Dióxido de Nitrogênio , Oxirredução , Compostos Orgânicos , Isótopos , Compostos Ferrosos
8.
Environ Sci Technol ; 57(33): 12453-12464, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37561149

RESUMO

Hematite is a common iron oxide in natural environments, which has been observed to influence the transport and fate of arsenate by its association with hematite. Although oxygen vacancies were demonstrated to exist in hematite, their contributions to the arsenate immobilization have not been quantified. In this study, hematite samples with tunable oxygen vacancy defect (OVD) concentrations were synthesized by treating defect-free hematite using different NaBH4 solutions. The vacancy defects were characterized by positron annihilation lifetime spectroscopy, Doppler broadening of annihilation radiation, extended X-ray absorption fine structure (EXAFS), thermogravimetric mass spectrometry (TG-MS), electron paramagnetic resonance (EPR), and X-ray photoelectron spectroscopy (XPS). The results revealed that oxygen vacancy was the primary defect type existing on the hematite surface. TG-MS combined with EPR analysis allowed quantification of OVD concentrations in hematite. Batch experiments revealed that OVDs had a positive effect on arsenate adsorption, which could be quantitatively described by a linear relationship between the OVD concentration (Cdef, mmol m-2) and the enhanced arsenate adsorption amount caused by defects (ΔQm, µmol m-2) (ΔQm = 20.94 Cdef, R2 = 0.9813). NH3-diffuse reflectance infrared Fourier transform (NH3-DRIFT) analysis and density functional theory (DFT) calculations demonstrated that OVDs in hematite were beneficial to the improvement in adsorption strength of surface-active sites, thus considerably promoting the immobilization of arsenate.


Assuntos
Arseniatos , Compostos Férricos , Compostos Férricos/química , Adsorção
9.
Environ Sci Technol ; 57(33): 12280-12290, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37549959

RESUMO

Arsenic (As) is a major environmental pollutant and poses a significant health risk to humans through rice consumption. Elevating the soil redox potential (Eh) has been shown to reduce As bioavailability and decrease As accumulation in rice grains. However, sustainable methods for managing the Eh of rice paddies are lacking. To address this issue, we propose a new approach that uses man-made aerenchymatous tissues (MAT) to increase soil Eh by mimicking O2 release from wet plant roots. Our study demonstrated that the MAT method sustainably increased the soil Eh levels from -119 to -80.7 mV (∼30%), over approximately 100 days and within a radius of around 5 cm from the surface of the MAT. Moreover, it resulted in a significant reduction (-28.5% to -63.3%) in dissolved organic carbon, Fe, Mn, and As concentrations. MAT-induced Fe(III) (oxyhydr)oxide minerals served as additional adsorption sites for dissolved As in soil porewater. Furthermore, MAT promoted the oxidation of arsenite to the less mobile arsenate by significantly enhancing the relative abundance of the aioA gene (130% increase in the 0-5 cm soil zone around MAT). The decrease in As bioavailability significantly reduced As accumulation in rice grains (-30.0%). This work offers a low-cost and sustainable method for mitigating As release in rice paddies by addressing the issue of soil Eh management.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Humanos , Ferro , Solo , Oxirredução , Óxidos
10.
Eur J Pharm Sci ; 188: 106521, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423578

RESUMO

Intravenous iron-carbohydrate nanomedicines are widely used to treat iron deficiency and iron deficiency anemia across a wide breadth of patient populations. These colloidal solutions of nanoparticles are complex drugs which inherently makes physicochemical characterization more challenging than small molecule drugs. There have been advancements in physicochemical characterization techniques such as dynamic light scattering and zeta potential measurement, that have provided a better understanding of the physical structure of these drug products in vitro. However, establishment and validation of complementary and orthogonal approaches are necessary to better understand the 3-dimensional physical structure of the iron-carbohydrate complexes, particularly with regard to their physical state in the context of the nanoparticle interaction with biological components such as whole blood (i.e. the nano-bio interface).


Assuntos
Ferro , Nanopartículas , Humanos , Tamanho da Partícula , Nanomedicina/métodos , Nanopartículas/química , Administração Intravenosa
11.
Environ Sci Technol ; 57(30): 11096-11107, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467428

RESUMO

Denitrification-driven Fe(II) oxidation is an important microbial metabolism that connects iron and nitrogen cycling in the environment. The formation of Fe(III) minerals in the periplasmic space has a significant effect on microbial metabolism and electron transfer, but direct evidence of iron ions entering the periplasm and resulting in periplasmic mineral precipitation and electron conduction properties has yet to be conclusively determined. Here, we investigated the pathways and amounts of iron, with different valence states and morphologies, entering the periplasmic space of the denitrifier Pseudomonas sp. JM-7 (P. JM-7), and the possible effects on the electron transfer and the denitrifying ability. When consistently provided with Fe(II) ions (from siderite (FeCO3)), the dissolved Fe(II) ions entered the periplasmic space and were oxidized to Fe(III), leading to the formation of a 25 nm thick crystalline goethite crust, which functioned as a semiconductor, accelerating the transfer of electrons from the intracellular to the extracellular matrix. This consequently doubled the denitrification rate and increased the electron transport capacity by 4-30 times (0.015-0.04 µA). However, as the Fe(II) concentration further increased to above 4 mM, the Fe(II) ions tended to preferentially nucleate, oxidize, and crystallize on the outer surface of P. JM-7, leading to the formation of a densely crystallized goethite layer, which significantly slowed down the metabolism of P. JM-7. In contrast to the Fe(II) conditions, regardless of the initial concentration of Fe(III), it was challenging for Fe(III) ions to form goethite in the periplasmic space. This work has shed light on the likely effects of iron on environmental microorganisms, improved our understanding of globally significant iron and nitrogen geochemical cycles in water, and expanded our ability to study and control these important processes.


Assuntos
Compostos Férricos , Compostos de Ferro , Periplasma/metabolismo , Água , Desnitrificação , Compostos de Ferro/química , Compostos de Ferro/metabolismo , Minerais/química , Ferro/química , Oxirredução , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Nitrogênio/metabolismo
12.
Environ Microbiol ; 25(10): 1796-1815, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37145936

RESUMO

The extent of how complex natural microbial communities contribute to metal corrosion is still not fully resolved, especially not for freshwater environments. In order to elucidate the key processes, we investigated rust tubercles forming massively on sheet piles along the river Havel (Germany) applying a complementary set of techniques. In-situ microsensor profiling revealed steep gradients of O2 , redox potential and pH within the tubercle. Micro-computed tomography and scanning electron microscopy showed a multi-layered inner structure with chambers and channels and various organisms embedded in the mineral matrix. Using Mössbauer spectroscopy we identified typical corrosion products including electrically conductive iron (Fe) minerals. Determination of bacterial gene copy numbers and sequencing of 16S rRNA and 18S rRNA amplicons supported a densely populated tubercle matrix with a phylogenetically and metabolically diverse microbial community. Based on our results and previous models of physic(electro)chemical reactions, we propose here a comprehensive concept of tubercle formation highlighting the crucial reactions and microorganisms involved (such as phototrophs, fermenting bacteria, dissimilatory sulphate and Fe(III) reducers) in metal corrosion in freshwaters.


Assuntos
Bactérias , Compostos Férricos , Corrosão , RNA Ribossômico 16S/genética , Microtomografia por Raio-X , Bactérias/genética , Minerais , Água Doce , Oxirredução
13.
Environ Sci Technol ; 57(23): 8628-8637, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37254500

RESUMO

Reactive oxygen species (ROS) play key roles in driving biogeochemical processes. Recent studies have revealed nonphotochemical electron transfer from redox-active substances (e.g., iron minerals) to oxygen as a new route for ROS production. Yet, naturally occurring iron minerals mainly exist in thermodynamically stable forms, restraining their potential for driving ROS production. Here, we report that tide-induced redox oscillations can activate thermodynamically stable iron minerals for enhanced ROS production. •OH production in intertidal soils (15.8 ± 0.5 µmol/m2) was found to be 5.9-fold more efficient than those in supratidal soils. Moreover, incubation of supratidal soils under tidal redox fluctuations dramatically enhanced •OH production by 4.3-fold. The tidal hydrology triggered redox alternation between biotic reduction and abiotic oxidation and could accelerate the production of reactive ferrous ions and amorphous ferric oxyhydroxides, making thermodynamically stable iron minerals into redox-active metastable iron phases (RAMPs) with reduced crystallinity and promoting surface electrochemical activities. Those RAMPs displayed enhanced redox activity for ROS production. Investigations of nationwide coastal soils verified that tide-induced redox oscillations could ubiquitously activate soils for enhanced ROS production. Our study demonstrates the effective formation of RAMPs from redox oscillations by hydrological perturbations, which provides new insights into natural ROS sources.


Assuntos
Ferro , Minerais , Ferro/química , Espécies Reativas de Oxigênio , Minerais/química , Compostos Férricos , Oxirredução , Solo
14.
Nat Commun ; 14(1): 2120, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055417

RESUMO

Ice-rich Pleistocene-age permafrost is particularly vulnerable to rapid thaw, which may quickly expose a large pool of sedimentary organic matter (OM) to microbial degradation and lead to emissions of climate-sensitive greenhouse gases. Protective physico-chemical mechanisms may, however, restrict microbial accessibility and reduce OM decomposition; mechanisms that may be influenced by changing environmental conditions during sediment deposition. Here we study different OM fractions in Siberian permafrost deposited during colder and warmer periods of the past 55,000 years. Among known stabilization mechanisms, the occlusion of OM in aggregates is of minor importance, while 33-74% of the organic carbon is associated with small, <6.3 µm mineral particles. Preservation of carbon in mineral-associated OM is enhanced by reactive iron minerals particularly during cold and dry climate, reflected by low microbial CO2 production in incubation experiments. Warmer and wetter conditions reduce OM stabilization, shown by more decomposed mineral-associated OM and up to 30% higher CO2 production. This shows that considering the stability and bioavailability of Pleistocene-age permafrost carbon is important for predicting future climate-carbon feedback.

15.
FEMS Microbiol Ecol ; 99(4)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36918194

RESUMO

The drinking water quality in Southeast Asia is at risk due to arsenic (As) groundwater contamination. Intensive use of fertilizers may lead to nitrate (NO3-) leaching into aquifers, yet very little is known about its effect on iron (Fe) and As mobility in water. We ran a set of microcosm experiments using aquifer sediment from Vietnam supplemented with 15NO3- and 13CH4. To assess the effect of nitrate-dependent anaerobic methane oxidation (N-DAMO) we also inoculated the sediment with two different N-DAMO enrichment cultures. We found that native microorganisms and both N-DAMO enrichments could efficiently consume all NO3- in 5 days. However, CH4 oxidation was observed only in the inoculated microcosms, suggesting that the native microbial community did not perform N-DAMO. In uninoculated microcosms, NO3- was preferentially used over Fe(III) as an electron acceptor and consequently inhibited Fe(III) reduction and As mobilization. The addition of N-DAMO enrichment cultures led to Fe(III) reduction and stimulated As and Mn release into the water. The archaeal community in all treatments was dominated by Ca. Methanoperedens while the bacterial community consisted of various denitrifiers. Our results suggest that input of N fertilizers to the aquifer decreases As mobility and that CH4 cannot serve as an electron donor for NO3- reduction.


Assuntos
Arsênio , Compostos Férricos , Água Subterrânea , Anaerobiose , Fertilizantes , Água Subterrânea/química , Metano/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Oxirredução
16.
Environ Microbiol Rep ; 15(4): 324-334, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36992623

RESUMO

Laboratory-based studies on microbial Fe(II) oxidation are commonly performed for 5-10 days in small volumes with high substrate concentrations, resulting in geochemical gradients and volumetric effects caused by sampling. We used a chemostat to enable uninterrupted supply of medium and investigated autotrophic nitrate-reducing Fe(II)-oxidizing culture KS for 24 days. We analysed Fe- and N-speciation, cell-mineral associations, and the identity of minerals. Results were compared to batch systems (50 and 700 mL-static/shaken). The Fe(II) oxidation rate was highest in the chemostat with 7.57 mM Fe(II) d-1 , while the extent of oxidation was similar to the other experimental setups (average oxidation of 92% of all Fe(II)). Short-range ordered Fe(III) phases, presumably ferrihydrite, precipitated and later goethite was detected in the chemostat. The 1 mM solid phase Fe(II) remained in the chemostat, up to 15 µM of reactive nitrite was measured, and 42% of visualized cells were partially or completely mineral-encrusted, likely caused by abiotic oxidation of Fe(II) by nitrite. Despite (partial) encrustation, cells were still viable. Our results show that even with similar oxidation rates as in batch cultures, cultivating Fe(II)-oxidizing microorganisms under continuous conditions reveals the importance of reactive nitrogen intermediates on Fe(II) oxidation, mineral formation and cell-mineral interactions.


Assuntos
Nitratos , Nitritos , Compostos Férricos , Compostos Ferrosos , Oxirredução , Minerais , Reatores Biológicos
17.
Environ Microbiol ; 25(8): 1538-1548, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36978205

RESUMO

Microbially mediated arsenic redox transformations are key for arsenic speciation and mobility in rice paddies. Whereas anaerobic anoxygenic photosynthesis coupled to arsenite (As(III)) oxidation has been widely examined in arsenic-replete ecosystems, it remains unknown whether this light-dependent process exists in paddy soils. Here, we isolated a phototrophic purple bacteria, Rhodobacter strain CZR27, from an arsenic-contaminated paddy soil and demonstrated its capacity to oxidize As(III) to arsenate (As(V)) using malate as a carbon source photosynthetically. Genome sequencing revealed an As(III)-oxidizing gene cluster (aioXSRBA) encoding an As(III) oxidase. Functional analyses showed that As(III) oxidation under anoxic phototrophic conditions correlated with transcription of the large subunit of the As(III) oxidase aioA gene. Furthermore, the non-As(III) oxidizer Rhodobacter capsulatus SB1003 heterologously expressing aioBA from strain CZR27 was able to oxidize As(III), indicating that aioBA was responsible for the observed As(III) oxidation in strain CZR27. Our study provides evidence for the presence of anaerobic photosynthesis-coupled As(III) oxidation in paddy soils, highlighting the importance of light-dependent, microbe-mediated arsenic redox changes in paddy arsenic biogeochemistry.


Assuntos
Arsênio , Arsenitos , Rhodobacter/genética , Ecossistema , Oxirredução , Oxirredutases , Bactérias , Solo
18.
Appl Environ Microbiol ; 89(3): e0019623, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36877057

RESUMO

Autotrophic nitrate-reducing Fe(II)-oxidizing (NRFeOx) microorganisms fix CO2 and oxidize Fe(II) coupled to denitrification, influencing carbon, iron, and nitrogen cycles in pH-neutral, anoxic environments. However, the distribution of electrons from Fe(II) oxidation to either biomass production (CO2 fixation) or energy generation (nitrate reduction) in autotrophic NRFeOx microorganisms has not been quantified. We therefore cultivated the autotrophic NRFeOx culture KS at different initial Fe/N ratios, followed geochemical parameters, identified minerals, analyzed N isotopes, and applied numerical modeling. We found that at all initial Fe/N ratios, the ratios of Fe(II)oxidized to nitratereduced were slightly higher (5.11 to 5.94 at Fe/N ratios of 10:1 and 10:0.5) or lower (4.27 to 4.59 at Fe/N ratios of 10:4, 10:2, 5:2, and 5:1) than the theoretical ratio for 100% Fe(II) oxidation being coupled to nitrate reduction (5:1). The main N denitrification product was N2O (71.88 to 96.29% at Fe/15N ratios of 10:4 and 5:1; 43.13 to 66.26% at an Fe/15N ratio of 10:1), implying that denitrification during NRFeOx was incomplete in culture KS. Based on the reaction model, on average 12% of electrons from Fe(II) oxidation were used for CO2 fixation while 88% of electrons were used for reduction of NO3- to N2O at Fe/N ratios of 10:4, 10:2, 5:2, and 5:1. With 10 mM Fe(II) (and 4, 2, 1, or 0.5 mM nitrate), most cells were closely associated with and partially encrusted by the Fe(III) (oxyhydr)oxide minerals, whereas at 5 mM Fe(II), most cells were free of cell surface mineral precipitates. The genus Gallionella (>80%) dominated culture KS regardless of the initial Fe/N ratios. Our results showed that Fe/N ratios play a key role in regulating N2O emissions, for distributing electrons between nitrate reduction and CO2 fixation, and for the degree of cell-mineral interactions in the autotrophic NRFeOx culture KS. IMPORTANCE Autotrophic NRFeOx microorganisms that oxidize Fe(II), reduce nitrate, and produce biomass play a key role in carbon, iron, and nitrogen cycles in pH-neutral, anoxic environments. Electrons from Fe(II) oxidation are used for the reduction of both carbon dioxide and nitrate. However, the question is how many electrons go into biomass production versus energy generation during autotrophic growth. Here, we demonstrated that in the autotrophic NRFeOx culture KS cultivated at Fe/N ratios of 10:4, 10:2, 5:2, and 5:1, ca. 12% of electrons went into biomass formation, while 88% of electrons were used for reduction of NO3- to N2O. Isotope analysis also showed that denitrification during NRFeOx was incomplete in culture KS and the main N denitrification product was N2O. Therefore, most electrons stemming from Fe(II) oxidation seemed to be used for N2O formation in culture KS. This is environmentally important for the greenhouse gas budget.


Assuntos
Compostos Férricos , Nitratos , Nitratos/metabolismo , Compostos Férricos/metabolismo , Dióxido de Carbono , Elétrons , Compostos Ferrosos/metabolismo , Oxirredução , Processos Autotróficos , Ferro , Minerais/metabolismo , Desnitrificação
19.
Environ Pollut ; 318: 120880, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528201

RESUMO

Arsenic (As) is a priority environmental pollutant in paddy field. The coupling of arsenate (As(V)) reduction with anaerobic methane (CH4) oxidation was recently demonstrated in paddy soils and has been suggested to serve as a critical driver for As transformation and mobilization. However, whether As(V)-dependent CH4 oxidation is driven by distinct methanotrophs under different pH conditions remains unclear. Here, we investigated the response of As(V)-dependent CH4 oxidation to pH shifts (pH 5.5-8.0) by employing isotopically labelled CH4. Furthermore, the underlying mechanisms were also investigated in well-controlled anoxic soil suspension incubations. Our results showed that As(V)-dependent CH4 oxidation is highly sensitive to pH changes (1.6-6.8 times variation of arsenite formation). A short-term (0-10 d) pH shift from near-neutral pH to acidic conditions (i.e., pH 5.5, -85% arsenite formation) had an inhibitory effect on As(V)-dependent CH4 oxidation. However, prolonged acidic conditions (i.e., >15 d) had no significant influence on As(V)-dependent CH4 oxidation. The microbial analyses indicated that As reduction in paddies can be driven by anaerobic CH4 oxidation archaea (ANME) and methanotrophs. And, methanotrophs may serve as a critical driver for As(V)-dependent CH4 oxidation. Moreover, type I methanotrophs Methylobacter were more active in oxidizing CH4 than type II methanotrophs Methylocystis when the pH ≥ 6.5. However, Methylocystis had a higher tolerance to soil acidification than Methylobacter. This study illustrates that As(V)-dependent CH4 oxidation could be dominated by distinct methanotrophs along with pH shifts, which eventually enhances As release in paddy soils.


Assuntos
Arsênio , Arsenitos , Methylococcaceae , Arsênio/metabolismo , Arsenitos/metabolismo , Solo , Microbiologia do Solo , Oxirredução , Metano/metabolismo , Methylococcaceae/metabolismo
20.
Geobiology ; 21(3): 355-377, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36524457

RESUMO

Deep-sea hydrothermal systems provide ideal conditions for prebiotic reactions and ancient metabolic pathways and, therefore, might have played a pivotal role in the emergence of life. To understand this role better, it is paramount to examine fundamental interactions between hydrothermal processes, non-living matter, and microbial life in deep time. However, the distribution and diversity of microbial communities in ancient deep-sea hydrothermal systems are still poorly constrained, so evolutionary, and ecological relationships remain unclear. One important reason is an insufficient understanding of the formation of diagnostic microbial biosignatures in such settings and their preservation through geological time. This contribution centers around microbial biosignatures in Precambrian deep-sea hydrothermal sulfide deposits. Intending to provide a valuable resource for scientists from across the natural sciences whose research is concerned with the origins of life, we first introduce different types of biosignatures that can be preserved over geological timescales (rock fabrics and textures, microfossils, mineral precipitates, carbonaceous matter, trace metal, and isotope geochemical signatures). We then review selected reports of biosignatures from Precambrian deep-sea hydrothermal sulfide deposits and discuss their geobiological significance. Our survey highlights that Precambrian hydrothermal sulfide deposits potentially encode valuable information on environmental conditions, the presence and nature of microbial life, and the complex interactions between fluids, micro-organisms, and minerals. It further emphasizes that the geobiological interpretation of these records is challenging and requires the concerted application of analytical and experimental methods from various fields, including geology, mineralogy, geochemistry, and microbiology. Well-orchestrated multidisciplinary studies allow us to understand the formation and preservation of microbial biosignatures in deep-sea hydrothermal sulfide systems and thus help unravel the fundamental geobiology of ancient settings. This, in turn, is critical for reconstructing life's emergence and early evolution on Earth and the search for life elsewhere in the universe.


Assuntos
Microbiota , Sulfetos , Minerais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...